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Abstract
This study evaluates the prediction skill for the stratospheric mass circulation variability in winter (November–March) in 
the Climate Forecast System, version 2 (CFSv2), from 2011 to 2018. Three stratospheric mass circulation indices measuring 
meridional mass transport into the polar stratosphere by the total flow (ST60N), wavenumber-1 (ST60N_W1), and wavenum-
ber-2 waves (ST60N_W2) are considered. The variability of ST60N is mainly contributed by ST60N_W1 and ST60N_W2, 
and these indices are good indicators of the timing and locations of the continental-scale cold-air outbreaks (CAOs) at mid-
latitudes. Thus, their potentially useful prediction skill can be utilized to make sub-seasonal forecasts of CAOs in a dynamical 
and statistical hybrid paradigm. Systematic forecast bias is found in both the 7-year averaged winter mean and seasonal cycle, 
which is tied to the overestimation of damping in amplitude and westward tilting variations of total waves and difficulties in 
forecasting the exact contributions from different spatial scales of waves. The intraseasonal variations of stratospheric mass 
circulation indices, with the systematic forecast bias corrected, can be modestly predicted at a forecast lead time of about 20 
days, in terms of both the anomaly value and timing of negative and positive peak events. The sub-seasonal predictability of 
the ST60N value mainly comes from the ST60N_W1, while the predictability of the timing of positive and negative peaks 
comes from the ST60N_W2. The 20-day prediction limit of the stratospheric mass circulation indices is mainly due to the 
2-week limit of the CFSv2 model in predicting the variability of anomalous wave tilt angle, whereas the prediction limit of 
the wave amplitude anomaly can exceed 50 days.
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1 Introduction

Subseasonal forecasts issued by most operational forecast 
centers, such as the Climate Prediction Center (CPC) of the 
US National Weather Service and the UK Met Office, are 
made by a combination of empirical and dynamical predic-
tion tools. On the one hand, dynamical tools derive forecasts 
by integrating global atmospheric models with prescribed 

ocean surface temperature or coupled ocean–atmosphere 
global models; while on the other hand, empirical mod-
els are derived purely from statistical analysis that either 
empirically predicts the dominant climate variability modes 
or relates particular phases of these modes to anomalies via 
their statistical relationships. Stratospheric variability is an 
important source of prediction skill to extend the predic-
tion limit of tropospheric forecasts both dynamically and 
empirically.

As for the role of stratospheric variability as the dynami-
cal tool for tropospheric forecasts, numerous numerical 
experiments have been conducted to quantify the impact 
of stratospheric variability on the troposphere in models, 
as summarized by Tripathi et  al. (2015) and references 
therein. Methods that directly assess the overall impact 
of the stratosphere on tropospheric forecast skill include 
degrading the representation of the stratosphere by restrict-
ing the stratospheric resolution and raising/lowering the top 
level of the model (Jung and Leutbecher 2007; Marshall 
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and Scaife 2010). Other experimental designs are more 
suited to assessing the importance for tropospheric forecast 
skill of the evolution of the stratospheric state in different 
regions and at different times. Both perturbation techniques 
(adding additional artificial forcing to the stratosphere) 
and relaxation techniques (damping the stratospheric state 
towards observations) have been used to quantify the role 
of the stratosphere in recent extreme winter seasons in the 
Northern Hemisphere. All such experiments suggest that 
improving the stratospheric representation and reducing 
stratospheric model error should lead to improved model 
forecasts for tropospheric circulation and weather. Forecast-
ing studies, however, suggest that in the Northern Hemi-
sphere this enhanced predictability in models arises only 
following certain sudden warmings and is not uniform in 
time (Mukougawa et al. 2009).

Therefore, we also need the other way to utilize the strat-
ospheric signal for tropospheric forecasts—constructing 
an empirical model based on the stratosphere-troposphere 
coupling relationship. The “downward impact” of the low-
frequency variability of the stratospheric northern annular 
mode (NAM) or stratospheric polar vortex intensity on the 
Arctic oscillation and associated extreme weather has been 
recognized as a new opportunity for subseasonal climate 
predictions in winter seasons, since the stratospheric signal 
provides information at a long lead-time (0–60 days) with 
respect to anomalous surface weather regimes (Baldwin and 
Dunkerton 2001; Thompson and Wallace 2001, 2002; Bald-
win et al. 2003; Polvani and Waugh 2004). However, such a 
long-lead-time relationship between stratospheric anomalies 
and the troposphere is not always found, because of both the 
large internal variability in the troposphere (Gerber et al. 
2009) and specific properties of the stratosphere, including 
its persistence and the depth of initial warming (Hitchcock 
and Simpson 2014; Gerber et al. 2009).

Recently, the quasi-simultaneous statistical relationship 
between continental-scale CAOs and stratospheric circula-
tion anomalies has drawn attention. Kolstad and Charlton-
Perez (2010), Mitchell et al. (2013), Kidston et al. (2015), 
and Lehtonen and Karpechko (2016) presented specific 
temperature anomaly patterns associated with sudden strato-
spheric warming (SSW) events of vortex splitting and vortex 
displacement types. Cai et al. (2016) found a close relation-
ship between individual continental-scale CAO events and 
the pulse-like signals in the stratospheric mass circula-
tion (denoted as “PULSE” events). The PULSE event was 
defined as the duration of a rapid increase in the air mass 
transported into the polar stratosphere (upper layers above 
400 K). These PULSE events occur every 2 weeks—almost 
as frequently as CAO events. There is a higher probability 
of CAO occurrence over the mid-latitude regions of Eura-
sia and North America within the 1–2 weeks before and 
after the peak dates of PULSE events. A follow-up study 

by Yu et al. (2018b, c) demonstrated that the pattern of cold 
temperature anomalies is also highly dependent on the spa-
tial scale of the dominant waves driving the stronger strato-
spheric meridional mass circulation. The cold surface air 
temperature anomalies often occur over mid-latitude Europe 
1–2 weeks before but over North America after peak time of 
PULSE events dominated by stronger wavenumber-1 waves, 
while cold anomalies tend to occur over the mid-latitudes of 
both North America and Eurasia in the 1–2 weeks around 
the peak time of PULSE events dominated by stronger wave-
number-2 waves. The link between PULSE events and sur-
face cold events can be explained by the global meridional 
mass circulation theory (e.g., Townsend and Johnson 1985; 
Johnson 1989; Cai and Shin 2014, and references therein), 
i.e., that westward-tilted planetary waves with deep verti-
cal structure drive equatorward polar cold-air mass trans-
port at the surface and poleward warm-air mass transport 
aloft, thereby leading to weather at the surface tending 
to be accompanied by PULSE events (Yu et al. 2015a, b; 
Iwasaki and Mochizuki 2012; Iwasaki et al. 2014). These 
robust “simultaneous” relationships mentioned above yield 
less information ahead of time but, provided stratospheric 
signals can be predicted more than 2 weeks in advance or 
longer, such relationships can still be used to significantly 
improve subseasonal forecasts.

Due to the significant impacts of the stratosphere on fore-
casting the troposphere, the predictability of the stratosphere 
itself is also of considerable interest to operational forecast-
ing centers. With more satellite data in the stratosphere to 
assimilate as the initial condition, and improved representa-
tion of the stratosphere by numerical models with increased 
vertical resolution and better resolved physical and chemical 
processes in the stratosphere (e.g., MacDonald 2005), we 
now have the capability to use numerical weather prediction 
models as an initial-value problem for stratospheric forecasts 
in the extratropics with useful skill in the subseasonal range 
[e.g., Tripathi et al. (2015) for all kinds of extreme polar 
vortex events; Christiansen (2005), Charlton and Polvani 
(2007) and Yoden et al. (2014), especially for major SSW 
events; Marshall et al. (2009) for a rare volcanic eruption 
event; Stan and Straus (2009), Li and Ding (2011), Zhang 
et al. (2013) and Noguchi et al. (2014) for zonal mean tem-
perature, geopotential height and wind anomalies; Cai et al. 
(2016) for PULSE events in the meridional mass transport 
into the polar stratosphere; and Ngan and Eperon (2011) 
for global kinetic energy]. Generally speaking, the predict-
ability limit of the circulation anomalies in the stratosphere 
is indeed longer than that in the troposphere. The predict-
ability limits of the daily zonal-mean geopotential height, 
temperature and wind fields are more than 1 month in the 
stratosphere, and the those of SSW events can be 10–20 days 
on average. For longer forecast lead-times (i.e., longer than 
1 month in advance), the prediction skills of stratospheric 
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circulation variables become unreliable, due to both limita-
tions in forecasting tropospheric planetary waves and strato-
spheric biases in models (Haynes 2005; Sun et al. 2012).

Notably, the predictability of stratospheric mass circula-
tion intensity as well as PULSE events has yet to receive 
sufficient attention from society in the same manner that the 
slowly-varying NAM and rarely-occurring SSW events per-
haps have, but nonetheless may be a more important aspect 
of the stratospheric circulation. Because these signals occur 
more frequently and link to individual extreme weather 
events, especially CAOs, rather than period-mean weather 
conditions (Yu et al. 2018b, c). In addition, the slower vari-
ability in the stratosphere, such as the NAM, can be physi-
cally attributed to the accumulative results of several rounds 
of warm air mass gain in the polar stratosphere by PULSE 
events (Cai et al. 2016; Yu et al. 2018a). The SSW events 
tend to be a subset of strong and long-lasting PULSE events 
(Yu et al. 2018c).

Cai et al. (2016) examined the 7-day running-mean time 
series of meridional mass transport into the polar strato-
sphere above 400 K (ST60N index) forecasted by the Cli-
mate Forecast System, version 2 (CFSv2) for the winter of 
2013/14 and found that CFSv2 has the ability to predict the 
main features of the temporal evolution of the ST60N index 
up to 1 month in advance. However, due to the limited access 
to CFSv2 real forecast data with sufficient vertical layers in 
the stratosphere, Cai et al. (2016) only examined one winter. 
Despite the overall successful weekly experimental forecasts 
of continental-scale CAOs in the winter season by utilizing 
the hybrid paradigm (Cai et al. 2016) made by a forecast 
team at Florida State University since September 2014 being 
able to provide supporting evidence for the subseasonal 
predictability of PULSEs, a direct and quantitative verifi-
cation has yet to be carried out. Moreover, as argued in Yu 
et al. (2018b, c), different types of PULSE events—namely, 
wavenumber-1–dominated and wavenumber-2–dominated 
events—tend to be associated with different surface tem-
perature patterns. This indicates that the predictability of the 
meridional mass transport by different wave components is 
also of importance for subseasonal forecasts of timing and 
location of CAOs via utilizing PULSE signals. Therefore, 
it is necessary to document the skill of CFSv2 in predicting 
the PULSEs in stratospheric mass circulation, as well as its 
main components, driven by different scales of waves, using 
datasets over a longer time range. From September 2011 to 
March 2018, seven winters of multi-layer data from CFSv2 
real-time forecasts are available. This allows us to utilize 
these CFSv2 S2S forecast data to take a closer look at the 
predictability of meridional mass circulation variability in 
the winter season.

This paper comprises six sections. Following this intro-
duction, Sect.  2 describes the data and the indices we 
define to capture the state of stratospheric meridional mass 

circulation at 60°N. In Sect. 3, we first examine the sys-
tematic forecast errors of the stratospheric meridional mass 
circulation indices; and then, in Sect. 4, evaluate the forecast 
skill of stratospheric mass circulation indices in terms of 
correlation scores and event-based probabilistic predictabil-
ity. Section 5 evaluates the forecast skill of wave properties 
at 60°N, including both the equivalent amplitude and verti-
cal tilt angle of total waves as well as wavenumber-1 and 
wavenumber-2 components, which together are the main 
drivers for the stratospheric mass circulation at 60°N. The 
final section provides conclusions.

2  Data and methods

2.1  Data

The NCEP’s CFSv2 became operational in March 2011 
(Saha et al. 2014), as the successor to CFSv1. The CFSv2 
model is a global spectral model coupled with ocean, land, 
and sea ice. It has a horizontal resolution approximately 
equivalent to 100 km (T126) and a vertical resolution of 64 
sigma-pressure hybrid levels. CFSv2 operational forecast 
products are available from 16 model runs, four time steps 
(0000, 0600, 1200, and 1800 UTC) per day, and four runs 
per time step. The 0000 UTC forecast products contain one 
control run, up to 9 months, and three additional perturbed 
runs up to one season. While the outputs from the other three 
time steps also contain a 9-month control run, their three 
additional perturbed runs extend to 45 days. CFSv2 subsea-
sonal forecast data have been generated for free download 
via http://nomad s.ncep.noaa.gov/pub/data/nccf/com/cfs/
prod/cfs/ since 2011, but only forecasts of the control run 
are stored since then. The three perturbed runs are no longer 
available for free download beyond 1 week. Thus, we only 
have forecast data from all four runs for the four winters 
from 2014 to 2018 (since the FSU forecast team began the 
experimental real-time CAO subseasonal forecasts) but one 
run for the 3 winters from 2011 to 2013.

To maximize the sample size of real-time forecast data, 
the data used in this study include daily data derived from 
the control run during the three winters (November–March) 
from November 2011 to March 2014 and the average of the 
four runs during the four winters from November 2014 to 
March 2018. However, notably, the four-run average fore-
casts (results not shown) show better forecast skills than the 
control run forecast alone. Considering the forecast limit of 
operational models, forecasts at lead times up to 50 days are 
to be evaluated; thereby, CFSv2 real-time forecast data from 
September to October are also needed. The initial field is 
regarded as the observation for verification purposes.

Variables used in this study include daily 2-m tempera-
ture (Ts), surface pressure (Ps), surface meridional wind 

http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/cfs/
http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/cfs/
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(vs), and three-dimensional air temperature (T) and meridi-
onal wind (v) fields. The data fields are on 1° latitude × 1° 
longitude grids and 37 pressure levels from 1000 to 1 hPa. 
Three-dimensional and surface potential temperature ( � and 
�s ) fields are derived from the daily fields of T, Ts, and Ps. 
Wavenumber-1 and wavenumber-2 components of meridi-
onal wind velocities at pressure levels (v1 and v2) and surface 
level (vs1 and vs2) are obtained via decomposing v and vs 
using the Fourier transform method.

2.2  Stratospheric mass circulation indices

The daily fields of potential temperature and meridional 
wind at the surface and pressure levels are first interpolated 
onto 200 equally spaced sigma ( � ) levels. Then, the air 
mass transported into the polar stratosphere above 400 K 
per second fulfilled by the total waves, wavenumber-1 and 
wavenumber-2 waves (denoted as ST60N, ST60N_W1 and 
ST60N_W2, respectively), as a function of time t and fore-
cast lead time � (� = 1 to 50) , are derived as

where m� =
��

g
Ps , the air mass between two adjacent sigma 

surfaces per unit area, in which g is the gravitational con-
stant and Δ� = 1/200; � is 60°N; � is longitude; R is the 
radius of Earth; and H(x) is the Heaviside function, such that 
H(x) = 1 for x ≥ 0, or otherwise H(x) = 0. The initial condi-
tion of CFSv2—namely, � = 0, is approximately regarded as 

ST60N(t, �) =

2�

∫
0

1

∫
0

m� ⋅ v(�, �, �, t, �) ⋅ H(�(�, �, �, t, �) − 400K)d�Rcos�d�

ST60N_W1(t, �) =

2�

∫
0

1

∫
0

m� ⋅ v1(�, �, �, t, �) ⋅ H(�(�, �, �, t, �) − 400K)d�Rcos�d�

(1)ST60N_W2(t, �) =

2�

∫
0

1

∫
0

m� ⋅ v2(�, �, �, t, �) ⋅ H(�(�, �, �, t, �) − 400K)d�Rcos�d�,

the observation. The ST60N, ST60N_W1 and ST60N_W2 
variabilities with periodicity of less than 7 days are filtered 
out using Lanczos filtering (Duchon 1979). According to Yu 
et al. (2018b), the net meridional mass transport into the 
polar stratosphere is mainly contributed by mass transport 
driven by wavenumber-1 and wavenumber-2. Thus, focusing 
on these three indices allows us to test the ability of the 
CFSv2 model in predicting the main features of the state of 
stratospheric mass circulation at the polar circle.

2.3  Positive and negative peak events 
of stratospheric mass circulation

Next, we define the observed stronger events, or positive 
peak events, of meridional mass transport into the polar 
stratosphere above 400 K by the total waves (as “PULSE” 
events named by Cai et al. 2016) as well as by the wavenum-
ber-1 and wavenumber-2 components respectively. Taking 
positive peak events in the ST60N index for example, we 
first detect all the local peaks in the time series of the ST60N 
index with a peak value at least above the seven-winter mean 
value. As seen from the time series of the ST60N index 
shown by the curves in Fig. 1, there are peaks close to each 
other and the valley between them is not deep enough to 
separate them as two events. In that case, we filter out the 
comparatively smaller peak if the difference of the peak 
value with the valley value between is less than 0.5 stand-
ard deviation (SD). For instance, a small local peak can be 
detected on 3 February 2016, but its difference with the local 
valley on 1 February 2016 is smaller than 0.5 SD; thus, it 
is not considered as a positive peak event of stratospheric 

mass circulation. As for negative peak events, we detect all 
the local minimums in the time series of the ST60N index 
below the climatological mean. For two neighboring peaks, 
we again remove the negative peak that has the smaller 
absolute value if its difference with the peak value between 
is less than 0.5 SD (e.g., the event around 10 December 

Fig. 1  Variations of the ST60N index (units:  109 kg  s−1) as a func-
tion of verification time (abscissa) during six winters from Novem-
ber 2011 to March 2017 and forecast lead time (ordinate). Day 0 in 
the lead time corresponds to the initial conditions of CFSv2 forecasts. 
Systematic error of the indices in forecasts are adjusted according to 
the 6-year mean seasonal cycle and standard deviations at each fore-
cast lead time shown in Figs. 2 and 3. Black curves in the lower pan-
els are the time series of ST60N derived from the initial conditions 
of CFSv2 forecasts; variations with periodicity less than 7 days have 
been filtered out using Lanczos filtering (Duchon 1979); red and blue 
dots on the black curves respectively indicate the local positive and 
negative peaks in the corresponding index derived from observation

◂
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2012). The positive and negative peaks in the ST60N_W1 
and ST60N_W2 indices are detected in a similar fashion and 
shown in lower panels in Figs. 2 and 3.

As listed in Table 1, during the six winters from 2011 to 
2018, there are a total of 77 positive and 81 negative peaks 
in ST60N, 39 positive and 38 negative peaks in ST60N_
W1, and 57 positive and 56 negative peaks in ST60N_W2. 
Despite only seven winters of data being available, the sam-
ple size of the peak events can be said to be sufficiently large 
for carrying out the forecast verification of dichotomous 
forecasts of peak events.

2.4  Wave amplitude and tilt indices

The variations of meridional mass transport are mainly driven 
by variations of both amplitude and the vertical tilt angle of 
waves (representing the baroclinic instability) according to 
Johnson (1989) and Yu et al. (2018a). We strictly follow 
Zhang et al. (2013) and Yu et al. (2018a) and derived two 
indices of wave properties: the amplitude (denoted as WA) 
and vertical westward tilting (denoted as WT) of waves along 
60°N. Positive values of the WT index indicate vertically 
westward-tilted waves (i.e., temperature troughs/ridges are on 
the west side of geopotential height troughs/ridges), and nega-
tive values correspond to eastward-tilted waves. According to 
Cai et al. (2014) and Yu et al. (2018a), the stratospheric WT 
index (above 250 hPa) has positive values most of the time 
(more than 90% of days) in winter, which indicates that the 
wave field in the extratropical stratosphere is dominated by 
baroclinic waves with a vertically westward-tilted structure.

2.5  Prediction skill evaluation methods

To assess the skill of the stratospheric mass circulation vari-
ability, the present study uses different skill evaluation meth-
ods: (i) Visual (“eyeball”) verification; (ii) the correlation 
coefficient (CC); and (iii) the hit rate (HR) and false alarm 
rate (FAR) in a fuzzy sense. The first two represent the deter-
ministic forecast, whereas the coupling relation between the 
HR and FAR represents the probabilistic forecast.

2.5.1  Anomaly correlation coefficient

The anomaly correlation coefficient (ACC) is a common 
verification metric used to evaluate deterministic forecasts 
and identify similarities in the patterns of departures from 
the climatological mean field (Wilks 2011). The ACC can 
be defined as:

(2)ACC =

∑n

i=1

1

n
(fi

�)(oi
�)

�

∑n

i=1

1

n
(fi

�)
2 ∑n

i=1

1

n
(oi

�)
2

,

where, n is the number of samples, fi′ is the forecast anomaly 
from its own climatology (7-year mean for each calendar 
day), and oi′ is the observed anomaly from its own climatol-
ogy. To investigate if the correlation skill has any depend-
ency on the amplitude of meridional mass transport into the 
polar stratosphere, we further split the seven-winter time 
series of the index into two parts. One is the period when 
the index is above normal, and the other is the period when 
the index is below normal. We derive the ACC according 
to Eqs. (3) and (4) for the above-average potions of the 
observed indices (denoted as ACC+ ), and the below-average 
portions ( ACC− ), to yield the prediction skill of stronger 
stratospheric mass circulation and weaker stratospheric mass 
circulation, separately:

where H(x) is the Heaviside function, such that H(x) = 1 for 
x ≥ 0, or otherwise H(x) = 0.

2.5.2  Fuzzy HR and FAR

The HR is defined as the proportion of occurrences when 
the observed PULSE event occurs at the same time as the 
forecasted PULSE event. Similarly, the FAR is defined as 
the proportion of nonoccurrences, i.e., when the forecasted 
PULSE event fails to co-occur with the observed events. 
Commonly, the HR and the FAR are used to represent the 
ability of a set of probabilistic forecasts to discriminate a 
dichotomous event (Swets 1973; Mason 1982; Stanski et al. 
1989; Kharin and Zwiers 2003). When HR > FAR, the fore-
casts are considered to be skillful predictions.

When calculating the HR and FAR, we utilize fuzzy 
verification methods, also called neighborhood verification 
methods. Fuzzy verification methods (e.g., Davis and Carr 
2000; Ebert 2008) give credit to “close” forecasts via not 
requiring an exact match between forecasts and observa-
tions but instead looking in a space/time/intensity neighbor-
hood around the point of interest. As such, fuzzy verification 
assumes that it is acceptable for the forecast to be slightly 
displaced and yet still be useful. Treatment of forecast data 
within a window includes the mean value (upscaling), occur-
rence of an event somewhere in the window, the frequency 
of events in the window, and the probability distribution 
of values within the window. The appropriate window size 
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Fig. 2  As in Fig. 1 but for ST60N_W1
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Fig. 3  As in Fig. 1 but for ST60N_W2
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should depend on the temporal resolution and the meteoro-
logical situation, so a single value may not be appropriate 
for all forecasts and domains. Fuzzy verification techniques 
address this question by allowing the neighborhood size to 
vary, thereby providing information on forecast quality as a 
function of scale. According to the total number of events 
in the seven winters listed in Table 1, the time interval for 
positive/negative peaks in ST60N, ST60N_W1, ST60N_W2 
is about 13, 27 and 18 days, respectively. Forecasts with a 
time error of less than 3 days could be considered as useful, 
especially for extended forecast ranges. Therefore, in the 
present study, we consider three windows for the forecasts 
of peak events: −1 to 1, − 2 to 2, and − 3 to 3 days’ deviation 
from the observation. Thus, later in the paper, we examine 
the fuzzy HR and FAR of stratospheric mass circulation 
positive/negative peak events allowing time shift errors of 
1–3 lead/lag days, separately.

3  Systematic forecast errors

We first evaluate the forecast error and bias for the clima-
tological mean state of winter stratospheric mass circula-
tion indices, namely ST60N, ST60N_W1 and ST60N_W2. 
Seen from the red curve of Fig. 4a, the winter mean (from 
November 2011 to March 2018) of ST60N is slightly over-
estimated at forecast lead times of 1–2 days compared with 
the observation (4.6 × 109 kg  s−1), then underestimated at 

3–14 days, and finally close to observation at longer lead 
times, indicating that the CFSv2 model can overall cap-
ture the winter mean value of ST60N at extended forecast 
range. The winter mean value of the ST60N_W1 index (red 
curve in Fig. 4b), however, is overestimated at forecast lead 
times beyond 1 week, with a maximum forecast error of 
about 1 × 109 kg  s−1 above observation (3.5 × 109 kg  s−1). In 

Table 1  Number of positive peak events and negative peak events 
in ST60N, ST60N_W1 and ST60N_W2, derived from the initial 
conditions of CFSv2 forecasts during the seven winters (November–
March) of 2011–2018

ST60N ST60N_W1 ST60N_W2

Positive peak
 2011/2012 11 7 9
 2012/2013 11 4 5
 2013/2014 12 5 11
 2014/2015 11 5 9
 2015/2016 10 7 7
 2016/2017 10 7 6
 2017/2018 12 4 10
 Seven-winter total 77 39 57

Negative peak
 2011/2012 11 5 9
 2012/2013 11 4 5
 2013/2014 13 6 8
 2014/2015 12 7 9
 2015/2016 10 5 8
 2016/2017 11 5 9
 2017/2018 13 6 9
 Seven-winter total 81 38 56

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Fig. 4  Seven-winter (November–March) mean (red curve; units:  109 
kg  s−1) and standard deviation (blue curve; units:  109 kg  s−1) of the a 
ST60N, b ST60N_W1 and c ST60N_W2 indices, derived from obser-
vation (zero forecast lead time) and CFSv2 forecasts at lead times 
from 1 to 50 days
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contrast, the CFSv2 model underestimates the winter mean 
value of ST60N_W2 (red curve in Fig. 4c) beyond the fore-
cast lead time of 1 week, with a maximum negative devia-
tion of about − 0.6 × 109 kg  s−1 from observation (3.2 × 109 
kg  s−1). Since the variability of ST60N is mainly contributed 
by ST60N_W1 and ST60N_W2 (Yu et al. 2018b), the ampli-
fication of the mass transport driven by the wavenumber-1 
component, and the severe damping of that driven by the 
wavenumber-2 component, at extended forecast range in the 
CFSv2 model, explains the overall consistency in the winter 
mean values of the ST60N index between observations and 
forecasts made at lead times from 1 to 50 days.

On the other hand, the standard deviations of all three 
stratospheric mass circulation indices (blue curves in Fig. 4) 
are significantly damped as the forecast lead increases. The 
damping is most remarkable for the ST60N_W2 index 
(blue curve in Fig. 4c), whose standard deviation decreases 
sharply at forecast lead times within 2 weeks and remains 
at about 40% the observed standard deviation beyond the 
2-week forecast lead. The standard deviation of ST60N_
W1 decreases almost linearly with forecast lead time (blue 
curve in Fig. 4b) and retains more than half the standard 
deviation derived from observations at the forecast lead 
time of 1 month. As mainly contributed by ST60N_W1 and 
S60N_W2, the standard deviation of ST60N (blue curve 
in Fig. 4a) decreases quickly in the first 2 weeks and then 
remains almost constant at about 45% the standard deviation 
derived from observations.

In addition, it is found that the forecast errors in climato-
logical mean and standard deviation of ST60N and ST60N_
W1 indices show clear seasonality. We derive the 7-year 
mean and standard deviation of ST60N at each verification 
time t (from 1 November to 31 March) and forecast time � 
(from 0 to 50 days) as:

A 31-day running mean operator is applied to obtain a 
smoothly varying annual cycle. The seasonal cycle of the 
ST60N_W1 and ST60N_W2 indices are calculated in the 
same way. Shown in the left-hand panels of Fig. 5a–c are 
the seasonal cycles of ST60N, ST60N_W1 and ST60N_W2 
derived from observation and forecasts (i.e., ST60N

yr
 , 

ST60N_W1
yr

 and ST60N_W2
yr
). First of all, the CFSv2 

model does a good job in capturing the seasonal cycle, sup-
ported by the similar seasonal variations between forecasts 
and observation. However, besides the biases of the winter 
mean in forecasts as illustrated in Fig. 4, we can clearly see 

(5)ST60N
yr
(�, t) =

1

7

2017
∑

yr=2011

ST60N(�, yr, t),

(6)

ST60N_SDyr(�, t) =
1

7

2017
∑

yr=2011

(

ST60N(�, yr, t) − ST60N
yr
(�, t)

)2

.

a lead-time-shift error in the wavenumber-1 component. The 
predicted ST60N

yr
 , in contrast, tends to lag the observations, 

by 10–20 days, in forecasts made 1–3 weeks in advance. 
The CFSv2 model shows little time-shift error for the sea-
sonal variation of the wavenuber-2 component. The seasonal 
variations of the interannual standard deviation of all three 
indices (shown in Fig. 5d–f) exhibit a systematic shift of 
maximum values towards a later time than observed, espe-
cially for ST60N_SD

yr
 and ST60N_W1_SD

yr
.

4  Evaluation of the forecast skill 
of stratospheric mass circulation indices

To reduce model forecast bias as mentioned above, we con-
duct a systematic adjustment for forecasts of the ST60N 
index according to:

Shown in the upper panels of Fig. 1 are the temporal 
evolutions of systematically adjusted ST60N (i.e., ST60Nc) 
derived from the CFSv2 forecasts at lead times of 1–50 days 
after systematic error correction and observations (0 forecast 
lead day) during seven winters from 2011 to 2018. Let us 
first visually compare the winter time series at different fore-
cast lead times. It is seen that the timing of a large portion of 
periods of below-normal and above-normal mass transport 
into the polar stratosphere can be captured in forecasts at 
lead times up to 30 days. However, we have to admit that 
the forecasts made within the range of less than 1 month 
have several flaws: first, an error of a few days exists for the 
peak time of stronger and weaker ST60N events; in addition, 
the consistency between the forecasts and observations is 
not always continuous from 1 to 30 days; the consistency 
between forecasts and observations looks to possess seasonal 
variations—namely, slightly weakened in both the early win-
ter month (November) and late winter month (March), com-
pared with December–February. Beyond the forecast lead 
time of 30 days, the exact timing of stronger and weaker 
ST60N events looks to be obscured in most cases, but the 
general intensity of stratospheric mass circulation still 
shows some consistency with observations at the monthly 
timescale. For example, the winter of 2015/16 can be eas-
ily divided into two periods based on the ST60N, which 
is below normal during the first half of the winter season 
(November–December) but above normal during the second 
half (January–March). The CFSv2 forecasts reproduce this 
general pattern of the temporal evolution of ST60N, even at 
forecast lead times of 40–50 days, albeit with a time-shift 

(7)
ST60Nc(yr, �, t) =

ST60N(yr, �, t) − ST60N
yr
(�, t)

ST60N
yr

SD
(�, t)

⋅ ST60N
yr

SD
(� = 0, t) + ST60N

yr
(� = 0, t).
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error. The winter of 2012/13 is another demonstration. The 
systematically adjusted forecast time series of mass transport 
driven by the wavenumber-1 and wavenumber-2 components 
(plotted in the upper panels of Figs. 2, 3) shows that fore-
casts made at less-than-20-day-lead are in good agreement 
with observations (lower panels of Figs. 2, 3); whereas at 
longer lead times, the occurrence of some peak events can 
still be captured by the CFSv2 model but the error in the 
timing of individual events tends to be larger.

4.1  ACCs

To quantitatively and objectively measure the prediction 
skill of the stratospheric mass circulation indices, we plot 
the lead–lag ACCs between observations and forecasts made 
at lead times from 0 to 50 days in the left-hand panels of 
Fig. 6. An ACC of 0.3 (marked by the horizontal black line) 
is considered as the cutoff for “marginally useful” skill in the 
subseasonal range—a term borrowed from the experience of 

the predictions of upper-level (i.e., 500-hPa height) charts 
in the 6–10-day range (e.g., Jones et al. 2000; Hamill et al. 
2004; Zhang et al. 2013; Weber and Clifford 2017). It can be 
seen that the maximum lead–lag correlation of forecasts with 
observations can be continuously above 0.3 at the forecast 
lead time of 14 days for ST60N, 23 days for ST60N_W1, 
and 18 days for ST60N_W2. A returning skill can be seen 
at the forecast lead time of 20 days for ST60N and 22 days 
and even 40 days for ST60N_W2. The maximum lead–lag 
correlation is mainly centered at zero lag but tends to shift 
towards positive lag days for ST60N_ST60N_W2 and nega-
tive lag days for ST60N_W1 at longer lead times, indicating 
a possible time-shift error in CFSv2 forecasts. We can see 
more clearly the ACC score of the operational CFSv2 fore-
casts for the ST60N, ST60N_W1 and ST60N_W2 indices 
with no time lag from the black curves in the right-hand 
panels of Fig. 6.

We also observe an improvement of predictability for 
large amplitude stratospheric mass circulation indices from 

S
T6
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S
T6

0N
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1
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0N
_W

2

Fig. 5  Winter seasonal cycle of the a ST60N, b ST60N_W1 and 
c ST60N_W2 indices (units:  109 kg  s−1) derived from observation 
(zero forecast lead time) and CFSv2 forecasts at lead times from 1 to 

50 days in the seven winters (November–March) from 2011 to 2018. 
Panels d–f are the same as a–c but for the 7-year standard deviations
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the larger ACCs for the forecasts of above-normal values of 
stratospheric mass circulation indices (i.e., stronger strato-
spheric mass circulation, ACC +) and below-normal values 
(i.e., weaker stratospheric mass circulation, ACC −), shown 
by the red and blue curves overlaid in the right-hand pan-
els of Fig. 7a–c. It can be seen that ACC + is higher than 
ACC − at all forecast lead times longer than 2 weeks for all 
three indices. Accordingly, the ACC + of ST60N remains 
above 0.3 till the forecast lead time of 20 days, while its 
ACC − falls below 0.3 from the forecast lead time of 2 weeks. 

The ACC + of ST60N_W1 is continuously above 0.3 till the 
forecast lead time of 25 days, while its ACC − starts to fall 
below 0.3 at the forecast lead time of 21 days. The ACC + of 
ST60N_W2 is above 0.3 till the forecast lead of 23 days, 
while its ACC − falls below 0.3 at the forecast lead of 18 
days. Of note is that the ACC + of ST60N and ST60N_W1 
approaches 0.3 again at the forecast lead times of 36 and 40 
days, respectively. The ACC + of ST60N_W2 has two periods 
of useful skill beyond 1 month—one is at forecast lead times 
of 31–36 days, and the other at around 45 days.

Fig. 6  Lead–lag ACCs (left-hand panels)  and zero-lag ACCs (right-
hand panels) of the CFSv2 forecasts for the seven winters of 2011–
2018 as a function of the forecast lead time (ordinate; units: days): 
a ST60N; b ST60N_W1; c ST60N_W2. The black curve is for the 

entire wintertime; the red curve is for the period when the index is 
above climatology; and the blue curve is for the period when the 
index is below climatology. The dots indicate statistical significance 
at the 5% level
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4.2  Probabilistic prediction skill of peak events

The timing of occurrence of the pulse-like increase or 
decrease in the stratospheric mass circulation is another 
important aspect of evaluating the forecast skills of the strat-
ospheric mass circulation. According to Cai et al. (2016) and 
Yu et al. (2018b, c), it is the timing of the pulse-like signal of 
ST60N that has an almost one-to-one correspondence with 
continental-scale CAO events at the surface. Therefore, the 

forecasts of stratospheric mass circulation variability can 
also be considered as a dichotomous forecast or yes/no fore-
cast. In this section, we examine the fuzzy FAR and POD of 
both positive and negative peaks in the ST60N, ST60N_W1 
and ST60N_W2 indices. We detect peaks in the time series 
spanning over the whole winter derived from forecasts made 
at each of the 1–50 days of lead time and verify the timing 
of peaks with those derived from observation. The bias (not 
shown), which is the ratio of the total number of forecast 

Fig. 7  Probability (units: %) of positive peaks in a ST60N, b ST60N_
W1 and c ST60N_W2 in the winter time series forecasted at various 
lead times to occur at lag times from − 7 to 7 days relative to the cor-

responding positive peaks in observation. Panels d–f are the same as 
a–c but for the negative peaks
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peak events to the total number of observed events, is close 
to 1, which indicates that the forecast system does a good 
job in forecasting the relative frequencies of peak events.

To find the correspondence of the forecasted peaks with 
the observed peaks as objectively as possible, we make pair 
of a peak in the observational time series with its counter-
part in the forecast time series following three steps. Tak-
ing ST60N positive peaks as an example, for the observed 
positive peak ST60N event #n (n = 1, N, where N is the total 
number of observed events), we search for the nearest posi-
tive peak in the forecast time series at forecast lead time of � 
days (� = 1, 50). Thus, for each � we have N forecast peaks 
paired with N observed peaks. Considering the dominant 
timescale of ST60N is about 2 weeks, we discard the forecast 
peaks that have a time shift of longer than 1 week relative to 
the paired peaks in the observation. In cases where two or 
more observed peaks are paired with one matching peak in 
the forecasts, we only keep the pair bond between this forecast 
peak and the nearest observed peak, and discard the other pair 
bond. We denote the time lag of the paired forecast peak with 
the observed peak as �(n, �) , and its value range is by design 
from − 7 to 7 or undefined for those observed peaks that fails 
to pair with any forecast peak. The probabilities of forecasted 
positive peaks at various forecast lead times, occurring at a 
specific lag time �0 (from − 7 to 7 days) relative to the cor-
responding peaks in observations can be derived as

where Y(x) = 1 for x = 0 and otherwise Y(x) = 0. P
(

�0, �
)

 
indicates the percentage of observed events successfully 
forecasted by the model despite of time-shift error of �0 
days. Similar pairing procedure and calculation can be con-
ducted on ST60N_W1 and ST60N_W2 indices.

It can be seen from Fig. 7a–c that the time shift of fore-
cast peaks has a broader spread as the forecast lead time 
increases. However, most of the forecast peaks occur within 
a lead–lag time of 3 days with respect to the observations. 
At forecast lead times less than 2 weeks, the forecast peak 
time tends to lag the observation by a few days. Beyond 
the 2-week forecast lead time, positive peaks in each of the 
three indices show an inconsistent tendency to lead or lag the 
observed peaks. Similar features can be seen for the forecast 
and observed negative peaks (shown in Fig. 7d–f), except 
that the large values of occurrence probability (e.g., > 15%) 
are confined within a shorter forecast lead time range than 
the positive peaks. Therefore, it can be stated that the fore-
cast peaks tend to occur within 1 week centered at the peak 
dates in observations, but little preference for lead–lag error 
can be found in forecasts made beyond 2-week lead times.

The summation of the probability shown in Fig. 7 within 
a specific range of �0 (the x-axis) represents the POD or HR 

(8)P
�

�0, �
�

=

∑N

n=1
Y(�(n, �) − �0)

N
,

in a fuzzy sense, as introduced in Sect. 2.5b. If we consider 
a forecast positive peak of ST60N during the period from 1 
day before to 1 day after the corresponding observed positive 
peak a successful detection, the fuzzy POD of the ST60N 
positive peak (shown by the solid red curve in Fig. 8a) is 
obtained by summing up the probability values in Fig. 7a 
from �0 = −1 day to �0 = 1 day. In the same fashion, we cal-
culate the fuzzy POD of the ST60N positive peaks allowing 
2- and 3-day time error and plot them in Fig. 8b, c. We fur-
ther derive the fuzzy FAR as the difference between the total 
number of forecast events and the successfully detected event 
number (i.e., the fuzzy POD multiplied by the total number 
of observed events) divided by the total number of forecast 
events at each lead time � . The fuzzy FARs for ST60N peak 
events are shown by the solid blue curves in Fig. 8a–c. The 
fuzzy POD and FAR (allowing 1-, 2- and 3-day time-shift 
error) for peaks of ST60N_W1 and ST60N_W2 are also com-
puted and displayed in Fig. 8d–f, g–i, respectively.

Seen from Fig. 8, as the forecast lead time increases, 
the fuzzy POD decreases but the fuzzy FAR increases, as 
forecasts of other tropospheric weather events. Following 
weather forecasters and considering forecasts with a POD 
exceeding the FAR as useful, we found that the predictable 
period for ST60N positive peak events is about 12 days for 
the case allowing a 1-day time shift error, about 15 days for a 
2-day time shift error, and 21 days for a 3-day time shift error. 
The predictable period for ST60N_W2 peaks are almost the 
same as those for ST60N. The forecast limit for ST60N_W1 
positive peaks is shorter, mainly due to the larger timescale of 
ST60N_W1, which may involve a longer time shift between 
adjacent peaks. The fuzzy POD and FAR of negative peaks 
in the stratospheric mass circulation indices exhibit similar 
variations with forecast lead time, but the forecast lead time 
when the fuzzy PDO starts to exceed FAR is slightly shorter, 
especially for the cases of ST60N allowing a 1-day time shift, 
ST60N_W1 allowing a 1–3-day time shift, and ST60N_W2 
allowing a 2-day time shift. This indicates a shorter predict-
able period for negative peaks than positive peaks, consistent 
with the relatively shorter predictable period for the smaller 
amplitude values of indices in terms of ACC shown in Fig. 6.

5  Forecast skills of wave amplitude and tilt 
angle

Johnson (1989) and a later study by Cai and Shin (2014) 
pointed out that the main driving forcing of the meridional 
mass circulation in the extratropics is the baroclinically 
amplifying waves. According a conceptual model of a baro-
clinically amplifying wave [see Fig. 10 in Johnson (1989)], 
the westward tilt of planetary waves with height contributes 
to the asymmetry between the air mass amount before and 
behind troughs/ridges in a given isentropic layer, leading 
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to net poleward/equatorward mass transport in upper/lower 
layer. The overall amplitude of waves along a latitudinal 
band, on the other hand, determines the meridional wind 
velocity that transports the air mass polewards or equator-
wards. Yu et al. (2018a) reported that the maximum correla-
tion of the ST60N index with the wave amplitude at 60°N 
(WA) is around 70–50 hPa, and that with the wave tilt angle 
(WT) is around 150 hPa. Therefore, we next investigate the 

prediction skills of the variability of amplitude and the ver-
tical tilt of waves at stratospheric levels, to gain a better 
understanding of the prediction skills of the adiabatic mass 
transport into the polar stratosphere above 400 K.

The forecast error and bias for the seven-winter mean 
wave indices measuring the equivalent amplitude and verti-
cal westward tilt angle of total waves, the wavenumber-1 
component, and the wavenumber-2 component, at various 

Fig. 8  The fuzzy probability 
of detection (POD; red solid 
curve) and false alarm rate 
(FAR; blue solid curve) of the 
positive peaks in a ST60N, b 
ST60N_W1 and c ST60N_W2 
in winter at forecast lead times 
from 1 to 50 days. Red and blue 
curves indicate cases when a 
1-day timing error is allowed—
namely, as long as the timing of 
the forecast peak is within −1 to 
1 day relative to the observed 
peak, we regard the peak in 
observation as successfully 
detected in the forecasts. Panels 
d–f are for the case when a 
2-day timing error is allowed, 
and g–i are for the case when a 
3-day timing error is allowed. 
Dashed curves are the same at 
the solid curves but for negative 
peaks
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stratospheric levels, are shown in Fig. 9. It can be seen that 
the winter mean WA index (Fig. 9a) and WT index (Fig. 9g) 
for the total waves derived from forecasts are consistent with 
that derived from observations at levels below 50 hPa. At 
upper-stratospheric levels above 50 hPa, WA is slightly over-
estimated around forecast lead times of 2–4 weeks but under-
estimated at forecast lead times beyond 1 month, and such 
bias is partly cancelled out by the slight overestimation bias 

of WT (Fig. 9g). This explains why the winter mean value 
of the ST60N index remains almost unchanged as the fore-
cast lead time increases (red curve in Fig. 4a). The forecast 
winter mean WA of wavenumber-1 waves (Fig. 9b) shows 
similar features with the WA of total waves, while the WT of 
wavenumber-1 waves (Fig. 9h) exhibits a clear overestima-
tion bias at almost all levels, leading to the overestimation of 
the winter mean ST60N_W1 (red curve in Fig. 4b). For the 

Fig. 9  Seven-winter (November–March) mean of wave amplitude 
index (WA; units: gpm) of a total waves, b wavenumber-1 compo-
nent, and c wavenumber-2 component, at stratospheric levels above 
150  hPa derived from observation (zero forecast lead time) and 

CFSv2 forecasts at lead times from 1 to 50 days. Panels (d–f) are the 
same as (a–c) but for the standard deviation of WA. Panels (g–j) are 
the same as (a–f) but for the seven-winter mean and standard devia-
tion of wave westward tilt angle index (WT; units: degrees)
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wavenumber-2 waves, both the winter mean WA (Fig. 9c) 
at all levels aove 150 hPa and WT (Fig. 9i) at lower strato-
spheric levels (125 and 150 hPa) decrease with an increase 
in forecast lead time, explaining the underestimation of the 
winter mean value of ST60N_W2 shown by the red curve 
in Fig. 4c. From Fig. 9d–f, j–l, the standard deviations of 
WA and WT in forecasts are all decreasing as the forecast 
lead increases for total waves and the wavenumber-1 and 
− 2 components, but the underestimation of the standard 
deviation of WT is less severe for total waves. By compar-
ing with the blue curves in Fig. 4, it can be stated that the 
underestimation bias of the standard deviation of both the 
wave amplitude and vertical tilt gives rise to the forecast 
bias of the winter standard deviation of stratospheric mass 
circulation indices.

To investigate CFSv2’s capability in capturing the intra-
seasonal variations of waves, we derive the anomalies of 
WA and WT of the total waves, wavenumber-1 component, 
and wavenumber-2 component, at stratospheric levels above 
150 hPa, via the removal of the seasonal cycle from the total 
field, and then calculate the ACCs of the CFSv2-forecast 
WA and WT. It can be seen from Fig. 10a, d that the rate of 
decline of the ACC of WA for the total waves is smaller than 
that for WT. The forecast lead when the ACC falls below 0.3 
is about 35–40 days for WA but about 14–25 days for WT, 
at various stratospheric levels. Specifically, the forecasts of 
the WA anomaly at 70–20 hPa, which is closely related with 
ST60N (Yu et al. 2018a), show useful skill beyond 50 days. 
However, the WT at lower levels (i.e., the level that has 
maximum positive correlations with ST60N according to 
Yu et al. 2018a) shows the shortest forecast limit, at 14 days. 
These results infer that the prediction limit of around 20 days 
for the stratospheric mass circulation indices and PULSE 
events is mainly restricted by the prediction limit for the 
wave tilt angle. Compared with the ACC of WA and WT of 
total waves, the ACC of WA and WT for wavenumber-1 and 
wavenumber-2 waves shown in Fig. 10b, c, e, f falls below 
0.3 at a shorter forecast lead time, although the prediction of 
WA of wavenumber-1 component can still be useful at more 
than 1 month in advance in the middle stratosphere. This 
implies that the CFSv2 model has greater difficulty in fore-
casting the spatial scale of waves than forecasting the total 
waves at longer lead times, resulting in the forecast errors of 
the variations of the ST60N_W1 and ST60N_W2 indices.

6  Conclusions

Using the subseasonal forecast dataset of CFSv2 for the 
period 2011–2018, this study evaluates the model’s predic-
tion skill for the stratospheric meridional mass circulation 
variability in seven winters (November–March). We con-
sider three circulation indices, include the meridional mass 

transport into the polar stratosphere above 400 K by the 
total flow (ST60N), and the wavenumber-1 (ST60N_W1) 
and wavenumber-2 waves (ST60N_W2). They are mainly 
driven by the westward tilt of planetary waves with height 
and the overall amplitude of waves along a latitudinal band. 
These three indices represent main features of stratospheric 
mass circulation around the polar circle, which are coupled 
with the equatorward cold-air mass transport at lower levels 
and thus closely related with specific spatiotemporal evolu-
tions of continental-scale CAOs at the surface. The predic-
tion skill is quantified using deterministic skill metrics, the 
ACC, and probabilistic skill metrics, through a combination 
of fuzzy POD and FAR. The prediction skills of both the cli-
matological mean seasonal variations and the synoptic-scale 
anomalous variations of the stratospheric indices, analyzed 
for lead times up to 50 days, are investigated, and indicate 
encouraging results in general.

By examining the forecast skills of the climatological 
mean fields of the stratospheric mass circulation indices, 
we find that CFSv2 model forecasts well capture the clima-
tological winter mean of ST60N, but overestimate/underes-
timate the mean of ST60N_W1/ ST60N_W2; forecasts show 
damping of the wintertime standard deviation of all three 
indices with an increase in the forecast lead time, especially 
for the ST60N_W2. These flaws in stratospheric mass cir-
culation indices are tied to the damping of amplitude and 
westward tilting variations of total waves and the failure to 
forecast the exact contributions from different spatial scales 
of waves. The systematic error of the stratospheric mass cir-
culation indices also exhibits some seasonality, especially 
in the ST60N_W1: the forecasted seasonal variations of 
ST60N_W1 tend to lead the observations at forecast lead 
time longer than 2 weeks.

Evaluation of the ability of CFSv2 model to predict 
the intraseasonal variations of stratospheric mass circula-
tion indices after removing the seasonal cycle yields that: 
(i) the CFSv2 model can capture not only the overall vari-
ability but also the timing of peaks of stratospheric mass 
circulation beyond a 1- to 2-week prediction limit of the 
troposphere; (ii) above-normal values and positive peaks 
of stratospheric mass circulation indices exhibit a longer 
prediction limit than the below-normal values and negative 
peaks of stratospheric mass circulation indices; and (iii) the 
forecast error in the overall temporal variability of ST60N_
W1 is smaller than those of the ST60N and ST60N_W2 
indices, whereas the forecast error in the timing of peaks in 
the ST60N and ST60N_W2 indices is smaller than that of 
ST60N_W1, which infers that the subseasonal predictability 
of the values of ST60N mainly derives from ST60N_W1, 
while for the timing of positive and negative peaks it comes 
from ST60N_W2. We summarize in Fig. 11 the predictable 
periods of the stratospheric indices and peak events using 
different methods.
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In addition, we examine the prediction skills of the 
amplitude and vertical tilt angle of waves after removing 
the seasonal cycle, which drive the anomalous intraseasonal 
variations of meridional mass circulation. Results show that 
the CFSv2 model can faithfully capture the wave amplitude 
more than 50 days in advance, while the predictability of 
wave tilt angle exhibits a much shorter limit. Thus, the pre-
diction limit of around 20 days for the stratospheric mass 
circulation indices could mainly be due to the limitation of 

the CFSv2 model in predicting the variability of wave tilt 
angle, which represents baroclinic instability. Results also 
show that the CFSv2 model has greater difficulty in forecast-
ing the spatial scale of waves than the total waves at longer 
lead times, which results in the larger forecast errors of the 
synoptic-scale variations of the ST60N_W1 and ST60N_W2 
indices than the ST60N index.

This study provides supporting evidence for the feasi-
bility of the prototype hybrid paradigm for sub-seasonal 

Fig. 10  Correlation scores of the CFSv2 forecasts for the WA of a 
total waves, b wavenumber-1 component, and c wavenumber-2 com-
ponent, at stratospheric levels above 150 hPa during the seven winters 

of 2011–2018 as a function of the forecast lead time (ordinate; units: 
days). Panels (d–f) are the same as (a–c) but for WT. The dots indi-
cate statistical significance at the 5% level
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forecasts of continental-scale CAOs put forward by Cai 
et al. (2016). In this hybrid paradigm, the precondition is 
the faithful forecast skills of stratospheric mass circulation 
variability (especially for large-amplitude signals). Using 
the faithful forecast time series of the stratospheric mass 
circulation indices to detect the timing of PULSE events, and 
then plugging the information of peak days, duration time, 
intensity, wave components into the pre-constructed statisti-
cal model linking the PULSE events to the continental-scale 
CAOs, the forecaster can issue forecasts for the temporal and 
spatial distribution of high probability for cold temperatures 
of different severity.
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